Exercise 9.2.5

(a) Show that the PDE

$$
y \frac{\partial \psi}{\partial x}+x \frac{\partial \psi}{\partial y}=0
$$

can be transformed into a readily soluble form by writing it in the new variables $u=x y$, $v=x^{2}-y^{2}$, and find its general solution.
(b) Discuss this result in terms of characteristics.

Solution

Part (a)

Make the change of variables,

$$
u=x y \quad v=x^{2}-y^{2} .
$$

The aim now is to find $\partial \psi / \partial x$ and $\partial \psi / \partial y$ in terms of these new variables. Use the chain rule.

$$
\begin{aligned}
& \frac{\partial \psi}{\partial x}=\frac{\partial \psi}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial \psi}{\partial v} \frac{\partial v}{\partial x}=\frac{\partial \psi}{\partial u}(y)+\frac{\partial \psi}{\partial v}(2 x)=y \frac{\partial \psi}{\partial u}+2 x \frac{\partial \psi}{\partial v} \\
& \frac{\partial \psi}{\partial y}=\frac{\partial \psi}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial \psi}{\partial v} \frac{\partial v}{\partial y}=\frac{\partial \psi}{\partial u}(x)+\frac{\partial \psi}{\partial v}(-2 y)=x \frac{\partial \psi}{\partial u}-2 y \frac{\partial \psi}{\partial v}
\end{aligned}
$$

Consequently, the transformed PDE is

$$
\begin{gathered}
y\left(y \frac{\partial \psi}{\partial u}+2 x \frac{\partial \psi}{\partial v}\right)+x\left(x \frac{\partial \psi}{\partial u}-2 y \frac{\partial \psi}{\partial v}\right)=0 \\
y^{2} \frac{\partial \psi}{\partial u}+2 x y \frac{\partial \psi}{\partial v}+x^{2} \frac{\partial \psi}{\partial u}-2 x y \frac{\partial \psi}{\partial v}=0 \\
\left(y^{2}+x^{2}\right) \frac{\partial \psi}{\partial u}=0 .
\end{gathered}
$$

Divide both sides by $x^{2}+y^{2}$.

$$
\frac{\partial \psi}{\partial u}=0
$$

This equation indicates that ψ has no dependence on u, so

$$
\psi(u, v)=f(v)
$$

where f is an arbitrary function. Now eliminate u and v in favor of x and y.

$$
\psi(x, y)=f\left(x^{2}-y^{2}\right)
$$

Part (b)

The solution to the PDE is the same all along each hyperbola in the $x y$-plane.

$$
x^{2}-y^{2}=\xi
$$

These are the characteristic curves.

