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Exercise 9.2.5

(a) Show that the PDE
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can be transformed into a readily soluble form by writing it in the new variables u = xy,
v = x2 − y2, and find its general solution.

(b) Discuss this result in terms of characteristics.

Solution

Part (a)

Make the change of variables,
u = xy v = x2 − y2.

The aim now is to find ∂ψ/∂x and ∂ψ/∂y in terms of these new variables. Use the chain rule.
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Consequently, the transformed PDE is
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Divide both sides by x2 + y2.
∂ψ

∂u
= 0.

This equation indicates that ψ has no dependence on u, so

ψ(u, v) = f(v),

where f is an arbitrary function. Now eliminate u and v in favor of x and y.

ψ(x, y) = f(x2 − y2)

Part (b)

The solution to the PDE is the same all along each hyperbola in the xy-plane.

x2 − y2 = ξ

These are the characteristic curves.
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